### Battery of the Computational Drug Design: The Avenue of Drug Repositioning

Dr. Homa Azizian PharmD. PhD in Medicinal Chemistry School of Pharmacy, Iran University Of medical Sciences



### Drug Repositioning

#### The process of finding new uses or indications for existing drugs





# Connectivity among drugs, genes, and diseases





# Successful repurposed drugs have been found in recent years ...

| _                                       |                                                                                       |                                                           | Current<br>development |                                                |
|-----------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|------------------------------------------------|
| Drug name                               | Intended use                                                                          | New use                                                   | status                 | References                                     |
| Thalidomide                             | Introduced as hypnotic drug,<br>later withdrawn due to adverse<br>teratogenic effects | Multiple myeloma,<br>leprosy                              | Approved               | Antitumor<br>activity<br>[43],<br>leprosy [44] |
| Itraconazole                            | Fungal infections                                                                     | Anticancer properties                                     | Clinical trials        | [45-47]                                        |
| Celecoxib                               | Osteoarthritis                                                                        | Colorectal polyps                                         | Approved               | [48]                                           |
| All-trans<br>retinoic<br>acid<br>(ATRA) | Severe acne                                                                           | Acute promyelocytic<br>leukemia                           | Approved               | [49]                                           |
| Metformin                               | Diabetes                                                                              | Breast cancer                                             | Clinical trials        | [50]                                           |
| Chloroquine                             | Malaria                                                                               | Lung cancer (as part<br>of combinatorial<br>drug therapy) | Clinical trials        | [51-53]                                        |
| Raloxifene                              | Osteoporosis                                                                          | Invasive breast cancer<br>in postmenopausal<br>women      | Approved               | [54]                                           |
| Tamoxifen                               | Metastatic breast cancers                                                             | Bipolar disorder                                          | Approved               | [55]                                           |

N Engl J Med 1999, 341:1565–1571 Microbes Infect 2002, 4:1193–1202

Oncol Lett 2017,14:1240–1246 Ecancer medical science 2015, 9:521 Med Chem 2016, 59:3635–3649

Oncology (Williston Park) 2002, 16:17-21

Semin Hematol 2001, 38:13–25

Breast Cancer Res 2015, 17:88

Acta Pharmacol Sin 2014, 35:645–652 Mol Cancer 2013, 12:16 Mol Cell Oncol 2014, e29911

Expert Opin Drug Saf 2008, 7:259–270 Iran J Child Neurol 2016,10:16–25



# The main challenge in drug repurposing Finding the new indication ...

#### **Bioinformatics tools**



## Different drug repositioning approaches for drug discovery and validation





Connecting Drugs, Targets, Diseases by *in silico* methods



|DharmC

### In silico Repositioning methods

- Integrated ligand-based and structure-based study
- Combining Virtual Screening and Molecular Dynamics Simulation
- ► Evolutionary Relationships Between Targets of Approved Drugs and Proteins of Interest
- Mining Adverse Event Data in ClinicalTrials.gov
- Transcriptomic Data Mining for Computational Drug Discovery
- ▶ Network-Based Drug Repositioning: Approaches, Resources, and Research Directions
- A Computational Bipartite Graph-Based Drug Repurposing Method
- ▶ Implementation of a Pipeline Using Disease-Disease Associations for Computational Drug Repurposing
- An Application of Computational Drug Repurposing Based on Transcriptomic Signatures
- Drug-Induced Expression-Based Computational Repurposing of Small Molecules Affecting Transcription Factor Activity
- A Drug Repurposing Method Based on Drug-Drug Interaction Networks and Using Energy Model Layouts
- Integrating Biological Networks for Drug Target Prediction and Prioritization
- ▶ Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing
- Computational Prediction of Drug-Target Interactions via Ensemble Learning
- A Machine-Learning-Based Drug Repurposing Approach Using Baseline Regularization.
- Machine Learning Approach for Predicting New Uses of Existing Drugs and Evaluation of Their Reliabilities
- A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogener
- Heter-LP: A Heterogeneous Label Propagation Method for Drug Repositioning.
- Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction

Molecular Biology 190

**Springer Protocols** 

Quentin Vanhaelen Editor

Computational Methods for Drug Repurposing

EXTRAS ONLINE





## *In Silico* Repurposing by Combining Virtual Screening and Molecular Dynamics Simulation





#### In silico repositioning of etidronate as a potential inhibitor of the Trypanosoma cruzi enolase: T. cruzi enolase inhibitors

Journal of Molecular Graphics and Modelling, 2020







## RMSD plot of TcENO backbone (a) and the probed ligands (b) during the MD simulation

Journal of Molecular Graphics Modelling, 2020and





### Computational Drug Repositioning strategy Based On Transcriptional Signature





### CMap database

Tools

Perturbagen type

clue.io/connection?url=macchiato.clue.io/builds/touchstone/v1.1/arfs/BRD-A81772229

|                                                                                                             | CTIONS     |                   |              |          | Тоо         |
|-------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------|----------|-------------|
| ■ INDEX: simvastatin ~                                                                                      | Connecti   | ons of refe       | erence perti | urbagens | to Index    |
| simvastatin ()<br>HMGCR inhibitor                                                                           | Con<br>sum | mections<br>Imary | s            | ubset by | Perturbagen |
|                                                                                                             | SUMMARY    | OE                | KD           | CP       |             |
| Perturbagen Type  Compound x 0  Gene Knock-Down x 0  Gene Over-Expression x 2160  CMap Class x 0  Data Lens |            |                   |              |          |             |

84

85

84.57

84.46

2467

O 0759

AGPAT1

HMOX2

Genes with both OE and KD constructs Perturbagens in which both OE and KD constructs exist for the same gene.

None

t. Version: 1.1.1.2 Search 📥 Export Name Rank Score • Type ID Descript 84.83 5980 CDKN1B 82 O 0998 MEIS2 83 84.63

Chang, et .al. (2010). Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping. Mol. Pain 6:56

> Iskar, M., et al. (2013). Mol. Syst. Biol. vinburnine, a vasodilator, and sulconazole, a topical antifungal, as interesting cell cycle blockers for cancer therapy



|       | Viewing: 2,160 / 2 | 2,160 |  |
|-------|--------------------|-------|--|
| ion - |                    | ٥     |  |
|       |                    |       |  |

Homeoboxes / TALE class 1-acylglycerol-3-phosphate O-acyltransferases Haem oxygenase

# Categories for assessment of drug repositioning

### Table 1. Classification of Drug Repurposing ClaimsAccording to Scientific Evidence

| Drug repositioning<br>evidence level | Quality of scientific<br>evidence                                                                                                                                    |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                    | No evidence; includes <i>in silico</i> predictions without confirmation                                                                                              |
| 1                                    | In vitro studies with limited value for predicting<br>in vivo/human situation                                                                                        |
| 2                                    | Animal studies with hypothetical relevance in man                                                                                                                    |
| 3                                    | Incomplete studies in man at the appropriate<br>dose, e.g., proof of concept; very few cases or<br>inference from medical records; some clinical<br>effects observed |
| 4                                    | Well-documented clinical end points observed for<br>the repurposed drug at doses within safety limits                                                                |

| Drug<br>repositioning<br>evidence level | Active<br>pharmaceutical<br>ingredient | Comments                                                                                                                                                           |
|-----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                       | Many examples                          | Quite often, such articles are<br>published in informatics/<br>computational journals<br>without experimental evidence                                             |
| 1                                       | Benzbromarone                          | Showed <i>in vitro</i> activity as quorum sensing inhibitor; could not be confirmed in animal models <sup>9</sup>                                                  |
| 2                                       | Astemizole                             | Showed effective activity as radiosensitizer when co-<br>administered to mice with xenograft tumors <sup>9</sup>                                                   |
| 3                                       | Ketorolac                              | Confirmed <i>in vitro</i> and <i>in vivo</i><br>activity as Rac1 and Cdc42<br>GTP-ase inhibitor*;<br>undergoing clinical trial for<br>ovarian cancer <sup>10</sup> |
| 4                                       | Sildenafil                             | Revatio <sup>™</sup> for pulmonary<br>hypertension following i<br>launch as Viagra <sup>™</sup> for t<br>erectile dysfunction <sub>Sett</sub>                      |

1

## The END

#### THANK YOU FOR YOUR ATTENTION



