

Quality by Design in Human Vaccines

REIHANEH MIRHASSANI

PRESENTED TO PHARMACY UPDATES FEB 2020

Outline

Vaccine Technology and Manufacturing Process

Biopharma Development Process

Quality by Design, Why and How?

Quality Attributes and Risk Assessment

Process steps and Parameters, The Design Space

Summary of the Overall Scheme

Nivad Pharmed Salamat

Focused on Human Vaccines:

Human papillomavirus Vaccine

Recombinant Influenza Vaccine

Insect Baculovirus Platform

Different types of vaccines

Recombinant Vaccines:		Live attenuated	Killed inactivated	Subunit
 Human Papillomavirus (Cervarix, Gardasil) 	Viral	Vaccinia Polio (OPV)	Polio (IPV) Rabies	Hepatitis B (HepB-surface antigen) Human papilloma virus (HPV)
 Hepatitis B Virus (Engerix) 		Yellow fever Measles	Influenza Hepatitis A	
 Influenza Virus (Flublok) 		Mumps Rubella		
Varicella Zoster Virus (Shingrix)	Influenza Rotavirus			
 Plasmodium falciparum (Mosquirix) 	Bacterial	BCG (tuberculosis) <i>Salmonella typhi</i> (oral)	<i>Bordetella pertussis</i> (whole cell) Cholera <i>Bacillus anthracis</i>	Tetanus (toxoid) Diphtheria (toxoid) Neisseria meningitidis (polysaccharide) Bordetella pertussis (acellular) Streptococcus pneumoniae, 23 valent (polysaccharide) Haemophilus influenzae, type b (Hib) (polysaccharide) Neisseria meningitidis (polysaccharide conjugate) Streptococcus pneumoniae, heptavalent
				(conjugate polysaccharides)

Salmonella typhi Vi (capsular polysaccharide)

Biopharma Manufacturing Process

Host cell line selection:

Purpose: choosing the host cell and getting the gene of interest into cells

Product impact: mutation of gene of interest, host cell differences in protein expression and post-translational modifications, host cell impurities, level of protein expression

Cell culture:

Purpose: production of the target protein under target growth conditions (temperature, media, pH, etc.)

Product impact: process productivity, post-translational modification, product degradation and host cell impurity levels

Purification:

Purpose: removal of host cell and impurities through centrifugation, filtration and chromatography using target conditions (temperature, pH, flow rates, and binding density, etc.) Product impact: extent of removal of impurities or product modifications (wanted or unwanted), protein degradation/ aggregation, biological activity

Formulation:

Purpose: final concentration and placing the protein in target buffer and container for long-term storage and shipment Product impact: formulation of aggregates/product degradation, impurities that can cause immune reactions, shelf life

Expression System

Different Expression systems for different applications

Table 2. A brief comparison among different systems with respect to their applications in producing recombinant VLPs					
Property	E. coli	Yeast	Baculovirus-insect cells	Mammalian cells	
Production cost	+	++	+++	++++	
VLP production levels	++++	+++	++	+	
VLP complexity ²⁰	+	++	++++	++	
Post-translational modifications(PTMs)*					
Disulfide bond	Unfavorable redox potential for disulfide bond formation	Yes	Yes	Yes	
O-glycosylation	No	Yes	Yes	Yes	
N-glycosylation	No	Yes	The inability to synthesize mammalian-type N-glycans	Yes	
Phosphorylation	No	Yes	Yes	Yes	
Acylation	No	Yes	Yes	Yes	
γ-Carboxylation	No	No	No	Yes	
Applications**	Simple polypeptides and proteins (Hecolin)	Mammalian-like or secreted proteins (Gardasil-4 and Gardasil- 9)	Mammalian-like or secreted proteins (Cervarix)	Mammalian proteins (GenHevac B)	

Drugs vs Vaccines

Clinical surrogates: HPV no antibody and immunity

No platform, No good QC

Process is product

Formulation

Monoclonal antibodies	Vaccines	Implications
Often well-characterized	Often difficult to characterize	Less definitive analytical comparability pathways Less ability to monitor product quality in mid-process
Clear link to mechanism of action (MoA) and/or biomarker surrogate for clinical performance	Difficult to establish clinical potency surrogates	Challenging to improve process post-licensure
Consistent process and product	Sometimes more complex, less predictable process/product	Variability over product/process life cycle
Therapeutic patient population	Prophylactic patient population	"Process is product" philosophy to assure quality
Well-understood process; good detectability for test methods	Less understood process; difficult to measure attribute changes	Empirical process models for linking parameter inputs to quality outputs
		More stringent threshold for reporting manufacturing changes

Adjuvants

Immune response and immunity

- Th1/Th2
- Antibody response
- Antibody maturity

Protective immune response

Continuous protection

	Th1 responses	Th2 responses	Cross priming	B cell responses	Mucosal response	Persistent T and B cell responses
Mineral salts [aluminum salts, calcium	+	++		+++		+
phosphate, AS04 (alum + MPL®)]						
Emulsions [MF59 TM (squalene/water), QS21,	++			+++	+	
ASO2 (squalene + MPL® + QS21), IFA,						
Montanide ISA51, Montanide ISA720]						
Liposomes [DMPC/Chol, AS01]	+++		+	+	+	+
Virosomes [IRIV], ISCOMs	++	++	++	+++	++	
DC Chol, mineral oil [IFA, Montanide®,		++		+++		
squalene,						
Mucosal delivery systems: chitosan					++	++
Microspheres	+		++			

Type of immune response

Table 2

Table 1

Vehicles/Delivery systems

Immune responses triggered by immunostimulants.

Immune responses triggered by vehicles/delivery systems.

Immunostimulant	Cellular interaction	Type of immune response
TLR ligands		
Bacterial lipopeptide, lipoprotein, and lipoteichoic acid; mycobacterial lipoglycan; yeast zymosan, porin	TLR-2, 2/1, 2/6	Th1, Ab, NK
Viral double-stranded RNA	TLR-3	NK
Lipopolysaccharide, lipid A, monophosphoryl lipid A (MPL®), AGPs, GLA	TLR-4	Strong Th1, Ab
Flagellin	TLR-5	Th1, CTL, Ab
Viral single stranded RNA, imidazoquinolines	TLR-7/8	Strong Th1, CTL
Bacterial DNA, CpG DNA, hemozoin	TLR-9	Strong Th1, CTL, and Ab; NK
Uropathogenic bacteria, protozoan profilin	TLR-11	Th1
Other		
Saponins (Quil-A, QS-21, Tomatine, ISCOM, ISCOMATRIX)	Antigen processing	Strong Th1, CTL, and Ab; long term memory
Cytokines: GM-CSF, IL-2, IFN-γ, Flt-3.	Cytokine receptors	Th1, Ab
Bacterial toxins (CT, LT)	ADP ribosylating factors	Ab

Process Development

Cell Line Development

Process Development and Optimization

- Development of process in plot scale
- CTD development

Scale up to commercial Scale

• Clinical study batch

Preclinical Studies

• Animal safety and efficacy

Clinical Studies

• Safety and efficacy

Quality By Design (QbD)

Conventional Paradigm:

Quality by Testing of Representative Samples

Flexible Manufacturing Environment with Rigorous Testing

Empirical Development

Manufacturing Process Based on Retrospective Data

Focus on Testing to Document Quality

Product Release based on Batch Data

Regulations Based on Testing Final Product

PharmacopoeialMonographs (USP, EP, JP, etc.)

New Quality Paradigm: Build Quality in the Product

Quality cannot be Tested; should be Built in by Design

Quality by Design of Effective and Efficient Manufacturing Processes

Use of Scientific and **Quality Risk Management** Principles and Quality Control Strategies based on understanding & Knowledge of Product and Process

Identify Critical Starting & Raw Materials and Process Parameters (CPP) Affecting Quality

Evaluate and Determine, if possible, their Relationship with Critical Quality Attributes (CQA)

Design a Process with On-line or At-line Monitoring of CPPs and CQAs

QbD

How?

- •Prior knowledge and/or initial development for process definition
- •Early stage process risk assessment (e.g., cause and effect (C&E) analysis)
- •Identification of high-risk parameters (e.g., screening DOE, one factor at a time)
- •Later stage (as well as scale-up) risk assessment (e.g., failure mode and effects analysis)
- •DOE for understanding high-risk steps and their associated high-risk parameters (e.g., optimization DOE, design space ranging experiments, modeling simulations for defect rates)

Scale-up confirmation

•Control strategy, process validation, and continuous improvement implications (i.e., remaining areas of high variability and high risk)

Product Profile

Target Product Profile:

Machanism of Action	• is a bivalent vaccine containing a non-infectious virus-like particle (VLP) and adjuvanted with an aluminum salt.		
WIECHAMISTI OF ACTION	• is expected to provide an enhanced cellular (Th1) and humoral (Th2), antigen-specific, protective immune response		
Indication	indicated for the active immunization of 9-25 year old females for prevention of HPV infections.		
	 reduction of rates of HPV contracction within one year after dosing in the target population 		
Primary enupoints	 Safe and tolerable as defined by solicited symptoms, adverse events, and serious adverse events 		
	Has a favorable risk-benefit profile		
Key Claim	Universal recommendation		
	 Achieves World Health Organization (WHO) stability requirements 		
	 Analysis supportive of primary endpoint in target population 		
Secondary endpoints	 Reduction in HPV rates in a 5 year span 		
	 Reduction in cervical cancer and precancerous lesions in a 15-20 year span 		
	 Duration of protection >10 years (with/without booster) 		

Quality Target Product Profile:

	 Easy to administer, 0.5-mL intramascular delivery in a healthcare setting using a 1-mL syringe
Key Claims	 Stability: 6 months at room-temperature storage or 4 years at 2–8 °C
	 No animal- or human-derived products are used in the manufacture
	Sterile product
	• 3 doses (containing 20 ug each of VLP; adsorbed to 500 ug aluminum adjuvant) administered at 0, 1, 6
Formulation	 Composition: sugar, surfactant, buffer (isotonic pH), and Ps-VLP conjugate
Formulation	 Label volume 0.5 mL filled (actual fill volume will be greater than the label volume to account for losses)
	 Single-dose vial (ISO2R vial, clear, Type I glass), latex-free stopper and seal
	 Secondary packaging and shipping: allowed shipping-excursion temperature 2-40 °C for 3 days in a carton

The Evolution of Quality

Louis Pasteur checking for visible particulates

CQA and Risk assessment

Quality attributes:

- Various effects on Safety, Efficacy
- Level of confidence is important
 Safety:
- Number of doses and volume
- Mode of administration
- Type of host, etc....

Score	Uncertainty
Very High 5	No information available
High 4	External information available from literature on related vaccine(s)
Moderate 3	Data from <i>internal</i> laboratory or nonclinical studies with this antigen:adjuvant complex, or <i>internal</i> data extrapolated from related vaccine(s)
Low 2	Supportive data from <i>clinical studies</i> with this antigen:adjuvant complex
Minimal 1	Published limits widely accepted by regulatory and scientific community

CQAs: How many? How much?

Control Strategy

Process Steps

• Some more effective

Process Parameters

Defining Importance?

- Based on risk assessment
- Empirical approach

CPPs: Setting the design space

Detecting contributing effects

Based on effects on CQA

Effect of CPPs on multiple CQAs

Setting limits

 Difference between regulatory and manufacturer approaches

Figure 2a: Contour plot of dissolution as a function of Parameters 1 and 2.

Figure 2b: Contour plot of friability as a function of Parameters 1 and 2.

Figure 2c: Proposed design space, comprised of the overlap region of ranges for friability and or dissolution.

CPPs: Setting the design space

Detecting contributing effects

• Based on effects of CQA

Effect of CPPs on multiple CQAs

Setting limits

 Difference between regulatory and manufact approaches

CPPs: Setting the design space

Detecting contributing effectsBased on effects of CQA

Effect of CPPs on multiple CQAs

Setting limits

 Difference between regulatory and manufacturer approaches

Thanks for your attention

Any Questions?