

Protein-Protein Interaction as a New Strategy to Inhibit HIV-1 Integrase

Presented by: Dr. Zahra Hajimahdi Assistant Professor of Medicinal Chemistry z.hajimahdi@sbmu.ac.ir

AIDS

Acquired ImmunoDeficiency Syndrome (AIDS)

HIV is the Etiological agent of the AIDS

H= Human

I= Immunodeficiency

HIV is a virus that attacks cells of your body's **immune system**

V= Virus HIV is a Virus

confirmed previous or current cytomegatowards
confirmed previous of these patients follow.
infection. Case reports of these patients follow.
Patient 1: A previously healthy 33-year-old man developed *P. carinii* pneum
oral mucosal candidiasis in March 1981 after a 2-month history of fever assoc
elevated liver enzymes, leukopenia, and CMV viruria. The serum compleme
CMV titer in October 1980 was 256; in May 1981 it was 32. The patient's
deterior ated despite courses of treatment with trimethoprim-sulfamethoxa
deterior ated despite courses of treatment with over one patient examination of the serum compania. But no evidence of neoplasia.

A new disease...

A new virus

gp41 **MHC Proteins** Transmembran e Glycoprotein gp120 Docking Lipid Glycoprotein Envelope RNA Genome Protease, Peptides, **Host Proteins** p17 Matrix Protein Capsid Nucleocapsid Integrase **Reverse Transcriptase**

1983

Summary of the global HIV epidemic (2018)

	People living with	People newly infected	HIV-related
	HIV in 2018	with HIV in 2018	deaths 2018
Total	37.9 million	1.7 million	770 000
	[32.7 million – 44.0 million]	[1.4 million – 2.3 million]	[570 000 – 1.1 million]
Adults	36.2 million	1.6 million	670 000
	[31.3 million – 42.0 million]	[1.2 million – 2.1 million]	[500 000 – 920 000]
Women	18.8 million	-	-
	[16.4 million – 21.7 million]	-	-
An Men	17.4 million	-	-
	[14.8 million – 20.5 million]	-	-
Children	1.7 million	160 000	100 000
(<15 years)	[1.3 million – 2.2 million]	[110 000 – 260 000]	[64 000 - 160 000]

Source: UNAIDS/WHO estimates

HIV Virus

- >HIV virus is a lentivirus of the family Retroviride>Biological nanostructure (around 100-150 nm)
 - oHost-derived Membrane

Nucleocapsid

- Genetic material in the form of RNA
- Protease
- Reverse Transcriptase
- Integrase
- Capsid protein P24, Nucleocapsid protein P7

Current Treatment of HIV/AIDS

First Anti HIV Drug : AZT (1987)

Highly Active Antiretroviral Therapy (HAART) (1996)
Make AIDS from Acute disease to Chronic disease

Antiretroviral therapy is the best option for prolonged and maximal viral suppression

FDA Approval of HIV Medicines

69.06

برنیزی این مرکزیکی وضاعت است رکز تعتیقت عدم دارون

Why New HIV Drugs?

I. Still few treatment Option

- II. The harsh side effects
 - Low compliance
- III. Multi drug resistance

R Polynucleotidyl transferase/esterase

X 32 kDa , 288 amino acids

First reported to be cloned and expressed in 1990 by Fyfe and Sherman at Wellcome Research Laboratories

Integrase

N-terminal domain			Catalytic core domain	C-terminal domain		
1	(NTD)	50	(CCD)	2 12	(CTD)	288
ſ	ннсс		DDE		en alle and an alle and an alle and all an	
	12 16 40 43		64 116 152			J
100	11 - 558 ⁴				-1: 1/	

Zn²⁺binding Multimerization Mg²⁺/Mn²⁺ chelation Catalysis and DNA binding

Non-specific DNA binding

HIV-1 integration

- 1) Integrase-HIV DNA binding
- 2) **3' Processing of HIV DNA**
- 3) Nuclear translocation
- 4) Host DNA binding & Strand transfer
- 5) Gap repair

INSTIs

LEDGF/p75

- •LEDGF is the main chromatin-tethering factor for IN
- The lens epithelium-derived growth factor (LEDGF)
- Function:
 - Transcriptional co-activator
 - Common nuclear autoantigen
 - Growth/survival factor
- •LEDGF/p52 and LEDGF/p75

LEDGF/p75

- N-terminal Pro-Trp-Trp-Pro (PWWP) chromatin binding domain
- integrase binding domain (IBD)

LEDGF/p75 IBD

- Compact right-handed bundle of five α -helices
- Binds to the catalytic core domain (CCD) and the N-terminal domain (NTD) of integrase

 Asp-366 makes a bidentate hydrogen bond to the mainchain amides of IN residues Glu-170 and His-171 in chain A

200

The side chain of LEDGF/p75 residue Ile365 projects into a hydrophobic pocket formed by the IN B-chain residues Leu102, Ala128, Ala129, and Trp132 and the A-chain residues Thr174 and Met178.

 LEDGF/p75 residues Phe-406 and Val-408 contact Trp-131 in the IN B chain

C 20.05

•LEDGF/p75 facilitates the IN activity in different ways including

- (i) Binding of LEDGF/p75 to integrase promotes organization of the enzyme as a tetramer
- (ii) LEDGF/p75 tethers the integration complex to the host chromatin thereby facilitating the integration process and viral replication
- (iii) LEDGF/p75 stimulates the catalytic activity of IN
- (iv) LEDGF protects IN from degradation through the ubiquitin-proteasome pathway.

Protein-protein Interaction Inhibitors

 Protein-protein interaction surface of LEDGF/p75 and IN might be a feasible target for inhibition by small molecules due to its limited extension and multiple hydrophobic and hydrogen bond interactions.

- LEDGIN (LEDGF/p75-integrase interaction site)
- ALLINIs (allosteric-integrase inhibitors)
- NCINIs (non-catalytic site integrase inhibitors)
- INLAIs (integrase-LEDGF allosteric inhibitors)

LEDGINs (allosteric inhibitors) 3' processing inhibitor Inhibiting the strand transfer and 3' LEDGINS processing reactions LEDGF/p75 Integrase Strand transfer inhibitor INSTIS LEDGF/p75 LEDGINS LEDGF/p7

No cross-resistant with INSTIS

Acting in an additive or synergistic way with INSTIs

 LEDGINs bind to the LEDGF/p75 binding pocket on HIV-1 IN and blocks INLEDGF/p75 interaction disrupting chromatin tethering of the IN (Early effect)

• LEDGINs can interfere with proper maturation due to enhanced IN multimerization in the progeny virions, when present during virus production (late effect)

IN-LEDGF/p75 interaction Inhibitors

Peptides

Small molecules (LEDGINs)

EC50 = 23.8 μg/mL in MT-4 cell CC50 = 76.82 μg/mL in MT-4 cells

LEDGINs

2-(quinolin-3-yl)acetic acid derivatives

 The first class of small-molecule allosteric inhibitors to display antiretroviral activity tied to a specific disruption of the IN-LEDGF/p75 interaction

Discovery of 2-(quinolin-3-yl)acetic acid derivatives

- Screening of a set of 200,000 commercially available compounds
 - Pharmacophore based screening and docking studies
 - the 25 best-scoring compounds were selected for biological evaluation

LEDGIN 1

36% inhibition of the LEDGF/p75-IN interaction at 100 μM

Christ F, et al. Nat Chem Biol 2010;6(6):442-8.

LEDGF/p75-IN interaction IC50 = 1.37 μ M EC50 = 2.35 μ M in MT-4 cells CC50 = 59.8 μ M in MT-4 cells

LEDGIN 6 CX05168

CX14442

LEDGF/p75-IN interaction IC50 = 0.046 μ M EC50 = 0.069 μ M in MT-4 cells CC50 = 96 μ M in MT-4 cells

 In another independent study by researchers of Boehringer Ingelheim Ltd. (BI), Canada, a series of highly similar molecules were identified in a high throughput screening for discovery of IN 3P inhibitors.

BI-A

20

BI-B BI-1001

BI-C

BI-D

BI 224436

• BI 224436 was progressed into Phase I clinical trial as the first IN-LEDGF interaction inhibitor

PAEC₉₅ = 22 nM CC50 > 90 μM

BI 224436

 Clinical trial studies and development of BI 224436 was licensed to Gilead Sciences in 2011. Since then, Gilead reported the development of three structures from these series: GS-A, GS-B, and GS-C

GS-A

GS-B

GS-C

EC50 = 470 nM

EC50 = 1nM

Peese et al. J. Med. Chem. 2019

Mechanism of action

 The compounds' carboxylic acid group mimics the carboxylate side chain of LEDGF/p75 residue Asp366 by forming hydrogen bonds with the backbone amides of IN residues Glu170 and His171.

ببنين سيبر ارتفاع مد ارتبل وضائية المارين ارتفتية علم داروي

Mechanism of action

 Central rings of compounds mimic LEDGF/p75 residue lle365 by occupying a hydrophobic pocket formed by the IN B-chain residues Leu102, Ala128, Ala129, and Trp132 and the A-chain residues Thr174 and Met178.

Mechanism of action

The *t*-butoxy group of compounds interacts with IN A-chain residue Thr174.

Mechanism of action

2005

Conclusion

- LEDGINs are still early in development
- Literature, however, reveals that almost all major pharmaceutical companies active in the treatment of HIV/AIDS have taken a significant interest in this class.
- Combined early and late effects present LEDGINs as unique within all classes of anti-HIV-drugs identified so far and might predestinate them for use in prevention and first in line therapy.
- They may well become the next class of antiretroviral agents to be added to HAART.

Thanks for your attention